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Abstract. Artificial sampling is one of the main approaches to dealing with imbalanced data. However, despite

a vast amount of research on sampling techniques, there is little known about the choice of the optimal sampling

ratio which can significantly improve the classification accuracy. In this paper, we attempt to fill the gap in the

literature by conducting both mathematical and numerical analysis. Concretely, we conduct a large-scale empirical

study on the relationship between the sampling ratio and classification accuracy. In addition, we investigate the

theoretical sampling ratio using the Bayesian approach and obtain the optimal ratio of 1√
e
≈ 0.6065 which is in

line with the results of the numerical experiments. We find that while factors such as the original imbalance ratio

or the number of features do not play a discernible role in determining the optimal ratio, the number of samples

in the dataset may have a tangible effect. We hope that the insights revealed in this study will help researchers

and practitioners select the optimal sampling ratio when dealing with imbalanced data.
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1 Introduction

Imbalanced data refers to skewed distribution of class labels in data. It is an issue that occurs
in a wide range of fields including medicine (Yildirim, 2017), cybersecurity (Sun et al., 2019),
fraud detection (Hassan & Abraham, 2016), and others (Buda et al., 2018). One of the common
approaches for dealing with imbalanced data is through artificial sampling. In most cases,
sampling is applied until a fully balanced dataset where each class has an equal number of
samples is obtained. However, it is not necessarily true that the data must be fully balanced to
achieve the optimal results. It is completely plausible - as we describe further in this section -
that a partial sampling would provide the best results. Partial sampling depends on the desired
class ratio - the ratio of the minority to majority class instances - which is also referred to as
the sampling ratio. Our goal in this paper is to investigate the effect of partial sampling on
the performance of classifiers. First, we use the Bayesian approach to determine the theoretical
optimal sampling ratio. Second, we carry out a large-scale empirical study to analyze the
relationship between the sampling ratio and classification accuracy. The results provide a better
understanding for the choice of the optimal sampling ratio and other useful insights about
artificial sampling.

The traditional argument for balancing the data is that classifiers tend to focus on the
majority class samples at the expense of the minority class. For instance, given a training set
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with a 1/100 class ratio, most classifiers would end up classifying all the samples as negative
(majority). Therefore, it is argued that class balancing is required to force classifiers to learn
the minority samples. On the other hand, by artificially balancing the data we are distorting the
reality. Ideally, the class ratios in the training and testing sets should be the same to maintain
the fidelity of the process. Sampling the training set while keeping the test set at the original
class ratio goes against this philosophy of congruent train and test sets.

Excessive sampling - where the sampled class ratio is far greater than the original class ratio
- may lead to artificial bias towards the minority class. In most cases, the increased accuracy
on the minority class is accompanied with a drastic decrease in accuracy on the majority class.
While in some instances the accuracy on the minority class is more important than the majority
class - as in the case of fraud detection or medical diagnostics - it is worthwhile to take into
account the accuracy on the majority class. Therefore, the optimal sampling ratio of the minority
to majority class samples must be chosen with great care.

Increasing the number of minority points through oversampling provides the classifier with
more data to learn the representation of the minority class. On the other hand, since the new
minority points are not generated from the true distribution, the increase in the number of
sampled points may lead to model misspecifications (Elreedy & Atiya, 2019). At some stage,
the issues related to model misspecification outweigh the benefits of learning the class repre-
sentations. The optimal sampling ratio occurs at the stage when the model accuracy begins to
deteriorate.

A compromise between full sampling and the original class ratio is partial sampling. Partial
sampling implies sampling the data up to a specified class ratio that is between the original class
ratio and the 50/50 ratio. To obtain the optimal partial sampling ratio a grid search procedure
can be utilized. Concretely, we can measure the performance of a classifier on the training set
for different partial sampling ratios using cross-validation. After identifying and training with
the optimal partial sampling ratio, the classifier is tested on a holdout set.

In this paper, we conduct a large-scale, systematic study of the effects of partial sampling
of imbalanced data on the performance of classifiers. In particular, we evaluate the accuracy
of classifiers that are trained on datasets sampled over a range of class ratios. Our study is
distinguished from other similar studies by its breadth. While other studies employ only a few
datasets and sampling methods (Buda et al., 2018; Seo & Kim, 2018; Thabtah et al., 2020), we
consider 20 imbalanced datasets (Table 1) and 10 sampling methods (Table 2). For each dataset,
we sample the original data with different ratios and evaluate the performance of the trained
classifier. We use random forests (RF) and support vector machines (SVM) as the base classifiers
in our numerical experiments. The RF and SVM classifiers are chosen due to their popularity
and relatively lower dependency on hyperparameter tuning than other popular classifiers such
as neural networks. In addition, we use Bayesian approach to estimate the theoretical optimal
sampling ratio which supports the results of the numerical experiments. The main contributions
of our study are outlined below:

1. Comprehensive analysis of imbalance ratios based on 20 datasets and 10 sampling methods

2. Thorough evaluation across a range of imbalanced ratios

3. Theoretical examination of optimal imbalance ratio

Given the scale of the present study, its findings provide valuable insights into the effects
of sampling ratio. The results of the numerical experiments reveal several key insights: i) the
optimal sampling ratio of the minority to majority samples is almost always less than 1 and
often in the range of 0.5-0.7, ii) while factors such the original imbalance ratio or the number of
features do not play a discernible role, the number of samples in the dataset may have a tangible
effect on the optimal ratio, and iii) the exact optimal ratio depends on the particular dataset.
The results hold across an array of popular sampling techniques. Based on the outcomes of
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our empirical study, we recommend selecting the optimal sampling ratio by using a grid search
procedure. Furthermore, the default sampling ratio is recommended to be 1√

e
≈ 0.6065 obtained

through analytical methods. We hope that our study helps researchers to better understand the
effects of different sampling ratios and expedite the selection of the optimal ratio.

In addition to addressing the class imbalance problem, another critical aspect that has re-
ceived relatively less attention is the impact of the sampling ratio on different types of classifiers.
Classifiers such as decision trees, support vector machines, and neural networks may respond
differently to various sampling ratios due to their distinct learning algorithms and model struc-
tures. Understanding these differences is essential for developing robust machine learning models
that can generalize well across different datasets and applications. This paper also aims to ex-
plore how different classifiers perform under varying sampling ratios, providing a comprehensive
analysis that can guide practitioners in selecting the appropriate sampling strategy for their
specific use case.

The paper is structured as follows. Section 2 discuses the current literature regarding im-
balanced data and sampling methods. Section 3 investigates theoretical aspects of the optimal
sampling ratio. Section 4 presents the methodology employed in the study including the ex-
perimental setup, datasets, sampling methods, classifiers, and metrics. Section 5 contains the
results and analysis of the numerical experiments. Section 6 concludes the paper with summary
remarks and discussion of future research.

2 Literature

The existing research about the effects of artificial partial sampling has been limited in breadth
and scope. Our work attempts to overcome the limitations of the previous studies by conducting
a large-scale empirical study that considers a wide range of sampling algorithms, datasets,
sampling ratios, and classifiers. In this section, we first describe several existing approaches to
artificial sampling of imbalanced data. Then, we review the research that is specifically related
to partial sampling.

Artificial data sampling is a widely used preprocessing step in many machine learning
pipelines. Despite some skepticism about the usage of sampling (Moniz & Monteiro, 2021)
most researchers agree about its efficacy. There exists a variety of sampling techniques in the
literature. A number of sampling techniques operate by generating new minority points between
the existing neighboring points. For instance, in the Synthetic Minority Oversampling Technique
(SMOTE) the new points are generated using a uniform distribution (Chawla et al., 2002), while
in the Gamma Oversampling algorithm the new points are generated via a gamma distribution
Kamalov & Denisov (2020). In a localized approach, more points are generated in the regions
closer to the majority class points (Chen et al., 2021; Zhu et al., 2020). New samples can also
be generated by first estimating the underlying distribution of the minority points. Given a
learned distribution, the new points are then obtained from the density distribution. To learn
the distribution of the points both statistical and deep learning models are used (Kamalov et al.,
2022). In the statistical approach kernel density estimation is applied (Kamalov, 2020), while in
the deep learning approach generative adversarial networks (GANs) are often employed (Sham-
solmoali et al., 2020; Zhang et al., 2020). Hybrid methods combine multiple heuristics in an
effort to improve performance. In Liu et al. (2024) , the authors target highly imbalanced data
scenarios by proposing a hybrid sampling method derived from optimized generative adversarial
network and natural neighbor search. A hybrid method combining SMOTE and an improved
search optimization technique was proposed in Singh et al. (2024) to tackle imbalanced data
in medical applications. In contrast to oversampling methods discussed above, undersampling
methods reduce the number of the majority points to achieve class balance. However, they
have witnessed limited use in the literature Bhattacharya et al. (2024); Vairetti et al. (2024).
Imbalanced data requires unique approaches for feature selection particularly in the context of
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high dimensional data (Kamalov et al., 2023).

Partial sampling and its effects on classification accuracy have been studied by several authors
albeit in limited capacity. The authors in Weiss & Provost (2003) found that the optimal
sampling ratio depends on the classifier performance metric. While the full sampling ratio is
preferred when measured by the area under the curve (AUC), the original sampling ratio is
preferred based on the classification accuracy. In Albisua et al. (2013), the authors concluded
that the optimal class distribution is not necessarily achieved at the fully balanced distribution.
Similarly, in Buda et al. (2018) the authors studied the effects of different imbalance ratios
in the context of image classification and convolutional neural networks. Their experiments
showed that class imbalance is generally detrimental to classifier performance. They also found
oversampling to be the most effective method for combating class imbalance. The effects of class
imbalance were also studied in Thabtah et al. (2020) who used undersampling to balance the
data. The authors found that classification precision and recall are the lowest at class ratio 0.5.

The authors of Garcia et al. (2010) considered two factors affecting the performance of
sampling methods: the employed classifier and the degree of imbalance. Their results indicate
that the best sampling method depends of the class imbalance ratio. They concluded that for
datasets having low or moderate class imbalance ratio, oversampling outperforms undersampling
using local classifiers such as kNN. However, some undersampling methods outperform over-
sampling when using global learning classifiers such as neural networks. The authors in Bonas
et al. (2020) used random oversampling and undersampling to evaluate the efficacy of different
sampling ratios. The results show no significant difference in classification accuracy for different
sampling ratios with only a small decrease around r = 1. In Seo & Kim (2018), the authors
seek to find the optimal sampling ratio for intrusion detection data (KDD99). The authors use
SMOTE to test the performance of various sampling ratios showing that the class ratio of r = 10
provides the optimal results. A large scale study of 85 different oversampling methods was done
in Kovács (2019b). Although the primary goal of the study was to identify the best sampling
method, the authors used a range of sampling ratios to train the classifier. Unfortunately, the
study did not indicate the performance of the sampling methods at different ratios. A broader
comparison of data-driven, algorithmic, and hybrid approaches was conducted in Fathy et al.
(2020).

As discussed above, there are a number of studies that explore the issue of the optimal
sampling ratio. However, the majority of the studies are either small or limited in scope. Our
study provides an up-to-date evaluation of the popular sampling algorithms based on a large
scale experimental database. As a result, we obtain more reliable and robust results.

3 Analytical optimal sampling ratio

In this section, we attempt to identify the optimal sampling ratio in the case of a binary classi-
fication problem using the Bayesian approach. Let Y be the binary target variable with Y = 0
as the minority label and X be a p-dimensional vector of features. Assume that each feature
is conditionally independent within each class. Then the log odds is given by the following
equation

log

(
Pr(Y = 0|X = x)

Pr(Y = 1|X = x)

)
= log

( Pr(Y =0∩X=x)
Pr(X)

Pr(Y =1∩X=x)
Pr(X)

)

= log

(
Pr(Y = 0 ∩ X = x)

Pr(Y = 1 ∩ X = x)

)
= log

(
Pr(Y = 0) Pr(X = x|Y = 0)

Pr(Y = 1) Pr(X = x|Y = 1)

)
= log

(
Pr(Y = 0) Πp

j=1Pr(Xj = xj |Y = 0)

Pr(Y = 1) Πp
j=1Pr(Xj = xj |Y = 1)

)
= log

(
Pr(Y = 0)

Pr(Y = 1)

)
+ Σp

j=1 log

(
Pr(Xj = xj |Y = 0)

Pr(Xj = xj |Y = 1)

)
.

(1)
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Assume that Pr(Xj = xj |Y = k) follows the Gaussian distribution N(µkj , σ
2
j ) for all j =

1, 2, ..p. Then, it follows from Equation 1 that

log

(
Pr(Y = 0|X = x)

Pr(Y = 1|X = x)

)
= log

(
Pr(Y = 0)

Pr(Y = 1)

)
+ Σp

j=1 log

( 1√
2πσj

exp(− 1
2σ2

j
(x− µ0j)

2)

1√
2πσj

exp(− 1
2σ2

j
(x− µ1j)2)

)

= log

(
Pr(Y = 0)

Pr(Y = 1)

)
− Σp

j=1

1

2σ2
j

(
(x− µ0j)

2 − (x− µ1j)
2

)
= log

(
Pr(Y = 0)

Pr(Y = 1)

)
− Σp

j=1

1

2σ2
j

(
(µ1j − µ0j)(2x− µ0j − µ1j)

)
.

(2)

Since Y = 0 is the minority label, then 0 < Pr(Y = 0) < 1
2 . Thus, the conditional expected

probability is 1
4 . Furthermore, note that the decision boundary in Equation 2 is determined when

the log odds is equal to zero. After normalizing the minority-conditioned Gaussian distribution
features, it follows that

log

(
Pr(Y = 0)

Pr(Y = 1)

)
= −1

2
. (3)

Finally, we obtain from Equation 3 that

Pr(Y = 0)

Pr(Y = 1)
= e−

1
2 . (4)

Note that e−
1
2 ≈ 0.6065. Thus, under the assumption of conditional independence, and Gaussian

distribution the optimal sampling ratio should be approximately 0.6065.

While the assumptions underpinning the theoretical optimal ratio are rarely satisfied in full
in practice, it is not unreasonable to expect an approximate similarity. Indeed, as demonstrated
in the results of the empirical study below, the theoretical value is often close to the optimal
ratio in practice.

4 Methodology

In this section, we discuss the experimental setup, datasets, sampling algorithms, and classifiers
used in our study.

4.1 Experimental setup

The objective of this study is to evaluate the efficacy of different sampling ratios for imbalanced
data. To this end, we consider a number of different imbalanced datasets to which we apply var-
ious sampling techniques to achieve a range of class ratios. In particular, we use cross-validation
to split the datasets into train and test sets. The train set is sampled to achieve a given class
ratio. Then a classifier is trained on the partially balanced data and tested on the holdout (test)
set. The classifier hyperparameters are tuned using cross-validation. The performance of the
classifier on the holdout set is measured using balanced accuracy and F1-macro. A detailed
description of the experiment is given below.

The experimental procedure

For each dataset:

1. Split the dataset using 4-fold cross-validation.

2. For each fold of cross-validation:
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i. Resample the train set (the remaining three folds) according to a specified ratio (m/M) in
the range 0.2 to 1.

ii. Tune the classifier on the resampled train set using a separate 4-fold cross-validation. Use
balanced accuracy to select the best model hyperparameters.

iii. Run the trained classifier on the test set.

iv. Record classification (balanced) accuracy and F1-macro on the test subset.

3. Calculate the average (balanced) accuracy and F1-macro over the 4 validation folds.

4. As a reference, train and test the classifier using the original data without resampling.

All the numerical experiments were carried out in Python using scikit (Pedregosa et al.,
2011), imblearn (imbalanced-learn, n.d.), and smote-variants (Kovács, 2019a) libraries.

4.2 Datasets

The main drawback of the existing literature on imbalanced class ratios is the limited amount
of data employed in the studies. In most cases, the studies employ only a few datasets. To fill
this gap in the literature, our study uses 20 datasets. The summary of the datasets used in
the study is presented in Table 1. The datasets are selected from a wide range of applications
including medicine, image recognition, engineering, and others. The class ratios of the datasets
range from 8.6:1 to 26:1. Similarly, the number of features and sample size vary considerably
providing a broad spectrum of data for our analysis. In multiclass datasets, one of the labels is
designated as the minority class, and the rest of the labels are grouped as the majority class. The
target column indicates the minority class label. The size column indicates the total number of
values in the dataset if fully balanced which is obtained as the product of samples, features, and
ratio. All the data used in the study are publicly available through the UCI Machine Learning
Repository Dua & Graff (2019).

Table 1: Datasets used in the study.

Name Repository & Target Ratio Samples Features Size
ID

1 ecoli UCI, target: imU 8.6:1 336 7 20227
2 optical digits UCI, target: 8 9.1:1 5,620 64 3273088
3 satimage UCI, target: 4 9.3:1 6,435 36 2154438
4 pen digits UCI, target: 5 9.4:1 10,992 16 1653197
5 abalone UCI, target: 7 9.7:1 4,177 10 405169
6 sick euthyroid UCI, target: sick euthyroid 9.8:1 3,163 42 1301891
7 spectrometer UCI, target: ≥44 11:1 531 93 543213
8 car eval 34 UCI, target: good, v good 12:1 1,728 21 435456
9 isolet UCI, target: A, B 12:1 7,797 617 57728988
10 us crime UCI, target: ≥0.65 12:1 1,994 100 2392800
11 yeast ml8 LIBSVM, target: 8 13:1 2,417 103 3236363
12 scene LIBSVM, target: >one label 13:1 2,407 294 9199554
13 libras move UCI, target: 1 14:1 360 90 453600
14 thyroid sick UCI, target: sick 15:1 3,772 52 2942160
15 coil 2000 KDD, CoIL, target: minority 16:1 9,822 85 13357920
16 arrhythmia UCI, target: 06 17:1 452 278 2136152
17 solar flare m0 UCI, target: M->0 19:1 1,389 32 844512
18 oil UCI, target: minority 22:1 937 49 1010086
19 car eval 4 UCI, target: vgood 26:1 1,728 21 943488
20 wine quality UCI, target: ≤4 26:1 4,898 11 1400828

4.3 Sampling methods

We consider ten different sampling techniques in our study: eight oversampling and two under-
sampling algorithms. The list of the sampling methods is provided in Table 2. The list includes
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classical as well as the state-of-the-art algorithms.

Table 2: Sampling methods used in the study.

Name Source Inclusion criterion
ID

1 SMOTE Chawla et al. (2002) Popularity
2 ADASYN He et al. (2008) Popularity
3 Borderline SMOTE Han et al. (2005) Popularity
4 SVM SMOTE Nguyen et al. (2011) Popularity
5 NearMiss Mani & Zhang (2003) Popularity
6 Random oversampling public Popularity
7 Random undersampling public Popularity
8 ProWSyn Barua et al. (2013) Performance
9 Polynomial SMOTE Gazzah & Amara (2008) Performance
10 Lee Lee et al. (2015) Performance

Following the lead of the recent empirical study (Kovács, 2019b), we consider the top-ranked
oversampling methods: Polynomial SMOTE (Gazzah & Amara, 2008), ProWSy (Barua et al.,
2013), (Lee et al., 2015) in our experimental study. In addition, we include popular oversampling
methods: SMOTE (Chawla et al., 2002), ADASYN (He et al., 2008), Borderline SMOTE (Han
et al., 2005), SVM SMOTE (Nguyen et al., 2011), NearMiss (Mani & Zhang, 2003), and the
basic baselines of random oversampling and undersampling. Many of these sampling methods
are based on the SMOTE framework, where a new minority sample is randomly generated along
the straight line connecting a pair of existing minority points.

To describe the sampling algorithms and for convenience in the rest of the paper, let us
introduce some basic notation. Let N,Nm, and NM be the total number of samples, the number
of minority and majority samples, respectively, where Nm + NM = N . The sampling ratio is
defined as the number of minority samples divided by the number of majority samples

r =
Nm

NM
. (5)

Thus, when r = 1, the data is completely balanced, while a low value of r indicates the prevalence
of the majority samples.

The majority of the sampling methods in our study are based on the SMOTE algorithm.
It is a simple yet efficient algorithm that provides asymptotically true distribution of the mi-
nority samples (Elreedy et al., 2023; Sakho et al., 2024; Kamalov, 2024). In the basic SMOTE
algorithm, given two samples xi,xj ∈ Rd, the new sample is generated by

xk = xi + p(xi − xj), (6)

where p is a uniformly distributed random variable on [0, 1]. In basic random oversampling
approach, the minority points are randomly cloned with no assumptions about their sampling
distribution. It is equivalent to employing a cost-sensitive classifier with the penalty N/Nm.

4.4 Classifiers and metrics

We use the performance of the classifier trained on resampled data as a proxy for the efficacy
of the sampling strategy. In particular, given an imbalanced dataset, we split it into train
and test subsets, and resample the train set up to the given class ratio. Then the classifier
is trained on the resampled train set and evaluated on the test set. The performance of the
classifier is evaluated using balanced accuracy and F1-macro. Balanced accuracy is defined as
the unweighted mean accuracy on the majority and minority subsets. Similarly, F1-macro is
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defined as the unweighted mean F-score on the majority and minority subsets. The F-score on
a set is defined as the harmonic mean of precision (PR) and recall (RE)

F1 = 2 · PR ·RE
PR+RE

, PR =
TP

TP + FP
, RE =

TP

TP + FN
. (7)

Since the goal of resampling is to improve the classification accuracy on the minority samples,
the use of balanced accuracy and F1-macro is recommended. Through the remainder of the
paper we will refer to balanced accuracy as simply accuracy.

We employ two standard classifiers in our experiments: random forest (RF) and support
vector machines (SVM). The two classifiers have also been used in previous studies (Bonas et
al., 2020; Seo & Kim, 2018). The RF algorithm is a widely used ensemble classifier that is
based on aggregating several individual decision tree classifiers into a single learner. The SVM
algorithm is another popular classifier that uses the kernel trick to learn a nonlinear decision
boundary. We also considered using a deep neural network as the third base classifier but it is
computationally infeasible given the number of experiments conducted in our study.

5 Results and analysis

In this section, we present and discuss the results of our numerical experiments aimed at un-
derstanding the effects of different sampling ratios. The results are based on evaluation of 20
imbalanced datasets, 10 sampling methods, and 2 classifiers. As described in Section 4.4, the
performance of the sampling strategies and ratios is measured based on the accuracy of the
classifier that is trained on the resampled train set. We focus on the results obtained based on
the RF classifier. The results based on the SVM classifier are in line with those of RF and are
summarized in the corresponding tables and figures.

Table 3: Balanced accuracy using the SMOTE sampling algorithm for the RF classifier.

orig 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 max

ecoli 0.7343 0.7677 0.7843 0.8070 0.8376 0.8123 0.8204 0.8473 0.8326 0.8057 0.8473
abalone 0.5434 0.5768 0.6067 0.6267 0.6421 0.6569 0.6661 0.6619 0.6698 0.6585 0.6698
car eval 34 0.9366 0.9644 0.9609 0.9534 0.9766 0.9682 0.9614 0.9605 0.9791 0.9774 0.9791
libras move 0.6964 0.7771 0.8128 0.8307 0.8557 0.8557 0.9027 0.8557 0.8807 0.8557 0.9027
spectrometer 0.8312 0.8408 0.8806 0.8902 0.8902 0.9205 0.8989 0.9075 0.8882 0.8991 0.9205
solar flare m0 0.5175 0.5390 0.5418 0.5492 0.5436 0.5578 0.5409 0.5560 0.5290 0.5487 0.5578
car eval 4 0.9118 0.9328 0.9226 0.9887 0.9890 0.9631 0.9606 0.9632 0.9916 0.9896 0.9916
oil 0.6658 0.7236 0.7291 0.7158 0.7464 0.7574 0.7297 0.7381 0.7308 0.7012 0.7574
sick euthyroid 0.9184 0.9311 0.9335 0.9333 0.9380 0.9342 0.9362 0.9370 0.9315 0.9326 0.9380
wine quality 0.5775 0.6511 0.6485 0.6540 0.6629 0.6595 0.6735 0.6726 0.6774 0.6557 0.6774
pen digits 0.9805 0.9871 0.9860 0.9861 0.9889 0.9885 0.9875 0.9880 0.9888 0.9879 0.9889
arrhythmia 0.5000 0.5000 0.5000 0.5196 0.5178 0.5155 0.5542 0.5554 0.5155 0.5542 0.5554
satimage 0.7504 0.7831 0.8000 0.8065 0.8084 0.8054 0.8082 0.8148 0.8196 0.8146 0.8196
us crime 0.6729 0.7165 0.7266 0.7430 0.7392 0.7279 0.7423 0.7474 0.7553 0.7537 0.7553
thyroid sick 0.8778 0.8974 0.9175 0.9138 0.9206 0.9242 0.9249 0.9386 0.9312 0.9278 0.9386
yeast ml8 0.4998 0.5000 0.5000 0.4993 0.4989 0.4986 0.4982 0.4967 0.4960 0.4978 0.5000
optical digits 0.8951 0.9074 0.9240 0.9240 0.9348 0.9309 0.9303 0.9357 0.9347 0.9386 0.9386
scene 0.5179 0.5201 0.5350 0.5519 0.5533 0.5552 0.5510 0.5480 0.5496 0.5615 0.5615
coil 2000 0.5230 0.5305 0.5305 0.5317 0.5326 0.5327 0.5331 0.5332 0.5348 0.5322 0.5348
isolet 0.7744 0.8611 0.8851 0.8933 0.8969 0.9021 0.9004 0.9050 0.9079 0.9045 0.9079

We begin by taking a close look at the effects of different sampling ratios based on the SMOTE
sampling algorithm. In Table 3, we provide the accuracy results, as measured on the test set,
for the RF classifier that is trained on a partially balanced set using the SMOTE algorithm.
The first column in the table, labeled orig, shows the accuracy on the original imbalanced data.
The last column in the table, labeled max, shows the maximum accuracy over all sampling
ratios. Thus, for the ecoli dataset the maximum accuracy is 0.8473 which is achieved at the
sampling ratio r = 0.8. Similarly, for the abalone dataset, the maximum accuracy is 0.6698
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which is achieved at the sampling ratio r = 0.9. Note that almost all the values in the max
column are greater than the corresponding values in the column r = 1 which indicates that
maximum accuracy is rarely achieved with full resampling. Indeed, it can be seen from Table
3 that the maximum accuracy is often achieved at lower sampling ratios between r = 0.2 and
r = 0.9. It can also be seen from Table 3 that the accuracy generally increases as the sampling
ratio increases from r = 0.2 to r = 1. This pattern holds across all the datasets in the table.
Furthermore, partial resampling, at any class ratio, produces higher accuracy than the original
imbalanced data.

In Figure 1, we present the average accuracy at each sampling ratio calculated over all the
datasets based on Table 3. It can be seen from Figure 1 that the greatest average accuracy
occurs at r = 0.8. In particular, the mean accuracy at r = 0.8 is greater than the accuracy at
r = 1. We also observe that the accuracy generally increases as the class ratio is increased via
sampling.
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Figure 1: The average accuracy at each class ratio using the SMOTE algorithm, where the average
is taken over all the datasets based on Table 3.

We extend the above analysis for the SMOTE algorithm to other sampling methods. Figure
2 shows the mean accuracy for each sampling method contained in Table 2. The mean is taken
over all datasets in Table 1. As discussed earlier, the SMOTE algorithm achieves the best
accuracy at ratio r = 0.8 (Figure 2a). For the ADASYN method, the best result is obtained
at r = 0.7 and r = 1 (Figure 2b). For the ROS, NearMiss, Border, PolySM, and Lee methods
the highest accuracy is achieved at sampling ratios of r = 0.8, r = 0.3, r = 0.7, r = 0.7, and
r = 0.8 respectively. The results show that on average the best performance of these algorithms
is achieved at r < 1.

We also note that in most cases, sampling has a positive effect on accuracy. As shown in
Figure 2, the accuracy at orig is lower than at all other ratios. This pattern holds for all the
sampling methods. Based on Figure 2, we conclude, that while data sampling has a significant
positive effect on the accuracy of the classifier, the optimal sampling ratio is generally below
the full resampling. In fact, our experiments show that the best sampling ratio of minority to
majority classes is around r = 0.7.

In Table 4, we provide another perspective on the performance of different sampling ratios. In
particular, we present the average accuracy for each combination of dataset and sampling ratio,
where for each pair (dataset, sampling ratio) the average is taken over all the sampling methods
in Table 2. As shown in Table 4, the highest mean accuracy - taken over all the sampling methods
- for the ecoli dataset is 0.8174 which is achieved at the sampling ratio r = 0.7. Similarly, for
the car eval 34 dataset, the highest average accuracy is 0.9667 which is achieved at r = 0.5. As
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Figure 2: The mean accuracy of each sampling method, where the average is taken over all the
datasets in Table 1. The accuracy is measured by the performance of the RF classifier trained on

the sampled data.
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can be seen from Table 4, in most cases, the highest average accuracy occurs at r < 1. Only in
4 out of 20 datasets the best accuracy is achieved at r = 1 . We also observe that the original
sampling ratio yields the lowest average accuracy. Based on Table 4, we conclude that while
resampling increases the average balanced accuracy for each dataset, the best results are often
obtained at resampling ratios less than r = 1. The practical implications of the accuracy results
are that

i. data sampling always improves the accuracy of the classifier,

ii. the values in the range 0.5-0.7 provide either the optimal or near-optimal sampling ratio,

iii. to obtain the exact value of the optimal ratio it is recommended to perform a grid search.

Note that while grid search is arguably the best approach to hyperparameter tuning, in-
cluding the sampling ratio, it can be computationally infeasible. The second observation above
allows to set the default sampling ratio at r = 0.7 or narrow down the grid search space to the
range 0.5-0.7.

Table 4: The mean balanced accuracy on each dataset, where the average is calculated over all the
sampling methods.

orig 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 max

ecoli 0.7343 0.7649 0.8019 0.7957 0.7957 0.8033 0.8174 0.8042 0.7848 0.7798 0.8174
abalone 0.5434 0.5766 0.5911 0.5956 0.6010 0.6106 0.6158 0.6218 0.6271 0.6280 0.6280
car eval 34 0.9366 0.9560 0.9579 0.9592 0.9667 0.9615 0.9643 0.9561 0.9578 0.9541 0.9667
libras move 0.6964 0.7992 0.8259 0.8302 0.8501 0.8541 0.8614 0.8471 0.8373 0.8494 0.8614
spectrometer 0.8312 0.8663 0.8885 0.8805 0.8913 0.9016 0.8842 0.8876 0.8862 0.8821 0.9016
solar flare m0 0.5175 0.5518 0.5526 0.5592 0.5612 0.5601 0.5607 0.5614 0.5575 0.5672 0.5672
car eval 4 0.9118 0.9373 0.9467 0.9570 0.9531 0.9548 0.9516 0.9499 0.9588 0.9468 0.9588
oil 0.6658 0.7224 0.7306 0.7296 0.7331 0.7388 0.7343 0.7296 0.7201 0.7161 0.7388
sick euthyroid 0.9184 0.9263 0.9228 0.9189 0.9185 0.9174 0.9164 0.9156 0.9151 0.9122 0.9263
wine quality 0.5775 0.6545 0.6651 0.6674 0.6690 0.6710 0.6711 0.6661 0.6675 0.6625 0.6711
pen digits 0.9805 0.9855 0.9862 0.9863 0.9870 0.9869 0.9804 0.9814 0.9813 0.9817 0.9870
arrhythmia 0.5000 0.5307 0.5287 0.5340 0.5492 0.5434 0.5650 0.5700 0.5705 0.5772 0.5772
satimage 0.7504 0.7879 0.7895 0.7916 0.7934 0.7958 0.7963 0.7970 0.7972 0.7971 0.7972
us crime 0.6729 0.7121 0.7287 0.7330 0.7375 0.7354 0.7381 0.7387 0.7362 0.7383 0.7387
thyroid sick 0.8778 0.8989 0.9069 0.9083 0.9053 0.9069 0.9021 0.9021 0.8986 0.8964 0.9083
yeast ml8 0.4998 0.5000 0.5000 0.5017 0.5060 0.5057 0.5118 0.5100 0.5082 0.5083 0.5118
optical digits 0.8951 0.9143 0.9208 0.9257 0.9296 0.9258 0.9262 0.9261 0.9239 0.9242 0.9296
scene 0.5179 0.5312 0.5460 0.5559 0.5616 0.5610 0.5639 0.5645 0.5656 0.5667 0.5667
coil 2000 0.5230 0.5372 0.5394 0.5413 0.5432 0.5439 0.5451 0.5457 0.5454 0.5445 0.5457
isolet 0.7692 0.8503 0.8696 0.8815 0.8854 0.8818 0.8801 0.8827 0.8819 0.8817 0.8854

The results in Table 4 show that there is little relation between the optimal sampling ratio and
dataset characteristics. In particular, the original imbalance ratio of a dataset plays little role in
determining its optimal sampling ratio. For instance, the ecoli and wine quality datasets which
have the lowest and highest imbalance ratios (Table 1) respectively, both achieve the optimal
performance at the sampling ratio r = 0.7 (Table 4). Similarly, the number of features in the
dataset has little effect on the optimal sampling ratio. For instance, the datasets car eval 34
and isolet both have the same optimal sampling ratio r = 0.5, but the number of features is 21
and 617, respectively.

The only meaningful relationship between the optimal sampling ratio and the properties of
the dataset that can be derived from the results in Table 4 is with respect to the number of
samples. In particular, datasets with larger number of samples tend to have smaller optimal
ratio. To derive this relationship, we consider the six datasets with the optimal ratio r ≤ 0.5 :
optical digits, pen digits, sick euthroid, car eval 34, isolet, and thyroid sick. The average number
of samples in the datasets with r ≤ 0.5 is 5512, while the average number of samples in the
datasets with r ≥ 0.6 is 2705. Thus, the average number of samples in datasets with r ≤ 0.5
is twice as large as in the datasets with r ≥ 0.6. We postulate that given a large number
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of samples in the original dataset, there is less need for additional minority samples to learn
the patterns within the data. Conversely, a dataset with relatively few samples requires more
minority samples for classifier to properly learn its patterns.

The mean F1-macro scores are presented in Table 5. As above, the average is taken over all
the sampling methods. The results indicate that the optimal F1-macro values are achieved at
lower sampling ratios. In particular, the highest F1-macro often occurs at r = 0.2 and r = 0.3.
It indicates that to obtain the best performance in terms of precision and recall we need to
apply a low sampling ratio. We also note that full sampling at r = 1 produces suboptimal
results which supports our findings based on the balanced accuracy metric.

Table 5: The mean F1-macro score on each dataset, where the average is calculated over all the
sampling methods.

orig 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 max

ecoli 0.7740 0.7850 0.8009 0.7853 0.7768 0.7734 0.7776 0.7604 0.7433 0.7295 0.8009
abalone 0.5551 0.5874 0.5952 0.5917 0.5875 0.5881 0.5831 0.5818 0.5809 0.5783 0.5952
car eval 34 0.9494 0.9529 0.9523 0.9510 0.9535 0.9487 0.9436 0.9340 0.9316 0.9240 0.9535
libras move 0.7605 0.8330 0.8401 0.8446 0.8538 0.8568 0.8556 0.8398 0.8327 0.8384 0.8568
spectrometer 0.8685 0.8804 0.8856 0.8714 0.8757 0.8773 0.8610 0.8590 0.8498 0.8508 0.8856
solar flare m0 0.5209 0.5412 0.5330 0.5328 0.5232 0.5141 0.5136 0.5132 0.5014 0.5079 0.5412
car eval 4 0.9450 0.9413 0.9442 0.9473 0.9413 0.9249 0.9178 0.9109 0.9141 0.9078 0.9473
oil 0.7239 0.7272 0.7279 0.7258 0.7162 0.7227 0.7144 0.7102 0.6977 0.6941 0.7279
sick euthyroid 0.9303 0.9221 0.9043 0.8960 0.8931 0.8893 0.8869 0.8853 0.8825 0.8805 0.9303
wine quality 0.6136 0.6599 0.6576 0.6485 0.6414 0.6359 0.6308 0.6219 0.6188 0.6105 0.6599
pen digits 0.9888 0.9913 0.9917 0.9911 0.9914 0.9886 0.9684 0.9700 0.9687 0.9697 0.9917
arrhythmia 0.4858 0.5234 0.5203 0.5212 0.5297 0.5252 0.5424 0.5364 0.5345 0.5359 0.5424
satimage 0.8016 0.8169 0.7925 0.7818 0.7777 0.7752 0.7697 0.7654 0.7624 0.7578 0.8169
us crime 0.7240 0.7344 0.7308 0.7222 0.7189 0.7099 0.7094 0.7050 0.6979 0.6982 0.7344
thyroid sick 0.9094 0.8966 0.8946 0.8902 0.8856 0.8845 0.8748 0.8715 0.8669 0.8625 0.9094
yeast ml8 0.4808 0.4809 0.4826 0.4851 0.4882 0.4821 0.4786 0.4715 0.4619 0.4579 0.4882
optical digits 0.9357 0.9477 0.9506 0.9523 0.9509 0.9374 0.9334 0.9293 0.9260 0.9240 0.9523
scene 0.5158 0.5350 0.5487 0.5545 0.5573 0.5479 0.5469 0.5428 0.5370 0.5380 0.5573
coil 2000 0.5283 0.5380 0.5342 0.5295 0.5252 0.5212 0.5166 0.5125 0.5088 0.5041 0.5380
isolet 0.8362 0.8923 0.8962 0.8946 0.8846 0.8738 0.8665 0.8658 0.8619 0.8586 0.8962

Table 6: The mean accuracy on each dataset - as measured by the performance of the SVC classifier
- calculated over all the sampling methods.

orig 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 max

ecoli 0.8045 0.8205 0.8415 0.8331 0.8460 0.8281 0.8243 0.8173 0.8160 0.8107 0.8460
abalone 0.5043 0.6312 0.6727 0.6904 0.6842 0.6851 0.6901 0.6942 0.6959 0.6978 0.6978
car eval 34 0.9641 0.9833 0.9844 0.9842 0.9858 0.9853 0.9834 0.9821 0.9837 0.9830 0.9858
libras move 0.8768 0.8803 0.8849 0.8841 0.8880 0.8924 0.8928 0.8909 0.8870 0.8885 0.8928
spectrometer 0.8546 0.9076 0.9109 0.9192 0.9124 0.9163 0.9121 0.9040 0.9098 0.9058 0.9192
solar flare m0 0.5058 0.5335 0.5417 0.5500 0.5566 0.5571 0.5607 0.5750 0.5718 0.5753 0.5753
car eval 4 0.9523 0.9874 0.9858 0.9968 0.9965 0.9927 0.9892 0.9847 0.9854 0.9870 0.9968
oil 0.7468 0.7682 0.7726 0.7714 0.7744 0.7810 0.7750 0.7761 0.7706 0.7702 0.7810
sick euthyroid 0.8722 0.9101 0.9070 0.9061 0.9009 0.8955 0.8882 0.8915 0.8916 0.8794 0.9101
wine quality 0.5694 0.6385 0.6489 0.6497 0.6551 0.6633 0.6670 0.6704 0.6720 0.6709 0.6720
pen digits 0.9957 0.9957 0.9944 0.9944 0.9946 0.9956 0.9953 0.9955 0.9956 0.9955 0.9957
arrhythmia 0.6385 0.5712 0.5579 0.5548 0.5535 0.5603 0.5596 0.5569 0.5491 0.5508 0.6385
satimage 0.7725 0.8290 0.8383 0.8363 0.8442 0.8409 0.8429 0.8440 0.8437 0.8448 0.8448
us crime 0.7044 0.7129 0.7172 0.7147 0.7133 0.7132 0.7135 0.7120 0.7111 0.7099 0.7172
thyroid sick 0.8115 0.8615 0.8712 0.8748 0.8709 0.8653 0.8693 0.8659 0.8668 0.8645 0.8748
yeast ml8 0.4984 0.5005 0.5032 0.5062 0.5036 0.5106 0.5091 0.5068 0.5071 0.5082 0.5106
optical digits 0.9661 0.9703 0.9720 0.9722 0.9732 0.9732 0.9721 0.9720 0.9713 0.9690 0.9732
scene 0.5399 0.5542 0.5556 0.5578 0.5619 0.5661 0.5648 0.5685 0.5667 0.5678 0.5685
coil 2000 0.5095 0.5283 0.5416 0.5475 0.5570 0.5608 0.5647 0.5652 0.5677 0.5680 0.5680
isolet 0.9366 0.9466 0.9461 0.9501 0.9476 0.9396 0.9344 0.9350 0.9331 0.9297 0.9501
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Figure 3: The mean accuracy of the sampling methods as measured by the performance of the SVC
classifier trained on the sampled data. The mean is taken over all the datasets in Table 1.
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Figure 4: The mean training times of the RF classifier on resampled data. The average is calculated
over all the datasets in Table 1. The training time increases as the sampling ratio increases.

The results in Tables 4 and 5 show that the choice of the performance metric affects the
optimal sampling ratio for imbalanced data. If the goal is to achieve the maximum accuracy
then sampling ratios r = 0.5 and r = 0.7 often produce the best performance. On the other
hand, sampling ratios r = 0.2 and r = 0.3 produce the best F1-macro values. These values can
be used as default parameters in sampling methods. In addition, regardless of the performance
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metric, we observe that sampling usually improves the performance and full sampling rarely
produces the best results. In general, we strongly recommend to perform a grid search over a
range of sampling ratios using cross-validation to identify the optimal sampling ratio.

The results using the SVM classifier are generally in line with above results obtained with
the RF classifier. The SVM-based experiments show that sampling improves the accuracy of
the classifier. The optimal sampling ratio often occurs at r < 1. The main difference between
the SVM and RF-based results is in the higher accuracy of the former. It appears that the SVM
classifier is better suited for imbalanced data when used in conjunction with sampling. The
details of the SVM-based experiments are supplied in Table 6 and Figure 3.

As shown in Table 6, there is no discernible relation between the optimal sampling ratio and
the original imbalance ratio. Similarly, the number of features in the dataset does not seem to
have much impact on the value of the optimal r. The only dataset property that appears to affect
the optimal ratio is the number of samples. Datasets with more samples, on average, achieve
the optimal performance at lower values of r. We conjecture that large datasets require fewer
additional minority samples to have enough samples points for effective pattern recognition.

As mentioned in the introduction, increasing the number of minority points through sampling
has a dual effect on classifier performance. On one hand, sampling provides the classifier with
more data to learn the representation of the minority class. On the other hand, since the new
points are not generated from the true distribution, they may lead to model misspecification.
As the the number of sampled points increases, the issues related to misspecification of the
model begin to outweigh the benefits of learning the minority class parameters. Our numerical
experiments show that the point of inflection often occurs around r = 0.7. At this optimal ratio,
we obtain enough information to produce statistically robust parameter estimates and avoid
overly skewing the minority class distribution.

Another important factor in the analysis of different sampling ratios is the classifier training
times. The number of minority points in the dataset increases as the sampling ratio increases.
For instance, given an imbalanced dataset with 1/10 original class ratio, the number of minority
points increases 10-fold if we choose r = 1 sampling ratio. The larger dataset leads to longer
training times. The classifier training times are approximately linearly related to the size of the
dataset. The training times for the RF classifier with different sampling ratios is supplied in
Figure 4.

In summary, our study reveals that while artificially increasing the class ratio in imbalanced
data improves classification accuracy, full sampling (r = 1) rarely produces the optimal results.
The sampling ratio around r = 0.7 often produces the best accuracy and can be set as the
default parameter value. While it is best to conduct a grid search to identify the exact optimal
ratio, it may be computationally infeasible especially in case of high imbalance ratio. Our study
supports the previous findings in the literature about the general benefits of data sampling.
However, the optimal sampling ratio identified in our experiments differs from the other studies.

The optimal sampling ratio depends on a number of factors including the data, sampling
method, and performance metric. Given the same dataset, different sampling methods or per-
formance metrics can lead to different optimal ratios. We find little relation between the optimal
ratio and dataset characteristics. In particular, dataset properties such as the original imbalance
ratio and the number of features play a trivial role in determining the optimal ratio. The only
factor that is found to affect the optimal ratio is the number of samples - datasets with large
number of samples tend to have lower optimal ratio. We conclude that the optimal sampling
ratio depends uniquely on the distribution of the data points in the feature space for a given
dataset.
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6 Conclusion

Imbalanced data is a major issue in data science and machine learning. As such it has attracted a
significant amount of research - particularly with respect to sampling techniques that artificially
balance the data. There currently exist dozens of sampling techniques that offer different ways
to balance the data. Nevertheless, one of the main questions regarding sampling approaches
remains open which is the choice of the optimal sampling ratio. On one hand, a high sampling
ratio can lead to sampling bias. On the other hand, a low sampling ratio may not provide
enough data to make a difference in classification accuracy. Therefore, it is crucial to identify
the optimal sampling ratio for imbalanced data.

In this paper, we take an empirical approach to identifying the optimal sampling ratio. We
carry out a large-scale study based on 10 sampling algorithms, 20 datasets, and 2 classifiers.
We apply the sampling techniques over a range of sampling ratios from 0.2 to 1 and analyze
the performance of the classifiers. The results of the numerical experiments allow us to observe
the effects of different levels of sampling on the classification accuracy. In particular, the results
show that i) sampling is generally a beneficial preprocessing step, ii) the optimal sampling ratio
is between 0.5 and 0.7 albeit the exact value depends on the dataset, iii) full resampling (r = 1)
is rarely the best option, and iv) there is an inverse relation between the number of samples and
the optimal ratio. The present study enhances our understanding of the effects of the sampling
ratio and provides insights into selecting the optimal ratio.

Our experiments show that while factors such the original imbalance ratio and the number
of features do not play a significant role in determining the optimal ratio, the number of samples
in the dataset may have a tangible impact. It is possible that a more complex interplay exists
between the data characteristics and the optimal ratio. Therefore, a future in-depth investigation
into the relationship between the intrinsic data properties and the optimal sampling ratio is
warranted.
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